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Abstract

To make the best use of the previous estimations and

shared redundancy across the consecutive video frames,

here we propose a scene and class agnostic, fully convolu-

tional neural network model for 4× video super-resolution.

One stage of our network is composed of a motion com-

pensation based input subnetwork, a blending backbone,

and a spatial upsampling subnetwork. We recurrently ap-

ply this network to reconstruct high-resolution frames and

then reuse them as additional reference frames after reshuf-

fling them into multiple low-resolution images. This allows

us to bootstrap and enhance image quality progressively.

Our experiments show that our method generates tempo-

rally consistent and high-quality results without artifacts.

Our method is ranked as the second best based on the SSIM

scores on the NTIRE2019 VSR Challenge, Clean Track.

1. Introduction

Improving the spatial resolution of visual data using its

original low-resolution version by non-optical means has

been one of the ultimate goals of image enhancement for

many years. Nowadays, video super-resolution (VSR) has

become even more critical as video accounted for 73 per-

cent of all internet traffic in 2016, and it will make up 82

percent in 2021 [19], reaching an astounding bandwidth of

187 exabytes (187 billion gigabytes) in a few years. The

demand is coming from all types of internet video, includ-

ing on-demand content, webcam viewing, traditional TV

options available over the internet as well as live video

thanks to new video offerings of social media, broadcast of

live sports, video surveillance and live over-the-top bundles

from content providers. VSR promises not only a reduced

bandwidth but also reduced latency for all these applica-

tions.

Nevertheless, the reconstruction of high-resolution (HR)

version from a low-resolution (LR) input is an ill-posed

problem since the original HR information is lost. To man-

Figure 1. Left: Bicubic. Right: Sample results of our video

super-resolution method. Test images are from the REDS [15]

validation dataset of the NTIRE 2019 VSR Challenge Clean Track.

age this, additional constraints that mainly rely on data re-

dundancy or multiple observations are imposed. The redun-

dancy is often enforced in the form of local correlations by

imposing sparsity constraints [27] or assuming constancy of

various image statistics such as multi-scale patch recurrence

[6] to recover lost high-frequency details. In case different

observations of the same scene are available, the shared re-

dundancy across the observations are used to regulate the

problem to invert the downscaling process [17]. Video data

naturally has a high degree of correlation across consecu-

tive frames within the same shot, which can be exploited to

reconstruct its HR version.

As the demand amplifies, the new trends in super-

resolution standing on the recent success of the convolu-

tional neural networks have also revolutionized the field

of VSR. Deep learning based techniques have quickly

achieved better high-resolution estimations. In spite of the

great strides, the existing VSR schemes still have several

issues. For instance, patch based neural networks, in par-

ticular the ones with shallower structures such as [1], [10],



[20] lack of global context and focus on local features. On

the other hand, deeper network with a larger number of pa-

rameters are harder to train as at the initial training stages,

the choice of the optimal hyperparameters such as the learn-

ing rate becomes crucial yet more difficult to estimate. Be-

cause of the GPU memory limitations, VSR networks typ-

ically trained in a patch based fashion. However, patch

size (even for big 128×128 patches) may not allow cov-

ering large object motion (as in classical aperture problem)

and learning benefiting aspects from larger receptive fields.

A direct adaptation of single image super-resolution frame-

works, e.g. [11], for video, e.g. [18], often requires upscal-

ing at the end of the pipeline at once, which causes a learn-

ing bottleneck when the target upsampling factor is 4× or

more.

In this paper, we propose a fully convolutional neural

network model for 4× video super-resolution that is capa-

ble of generating sharp video frames with high-resolution

details by taking advantage of motion compensated refer-

ence frames and reusing the high-resolution versions of the

reference frames estimated in the previous stages for a boot-

strapped (in other words, recurrent) resolution enhancement

process. Sample results of our method can be seen in Fig. 1

and 5. We do not make any assumption about the objects in

the images; thus our method is class-agnostic.

Our intuition is that the super-resolution performance

of neural networks improves when the number of low-

resolution references that it can build evidence on high-

resolution details increases. For this reason, we employ

multiple motion-compensated reference frames of the cur-

rent frame. As noted in previous works, it is not straightfor-

ward to optimize the neural networks for temporally con-

sistent results since no information of the previously super-

resolved frame is directly included in the current step. To

encourage temporally consistent results, we use a boot-

strapped frame-recurrent approach where the reconstructed

high-resolution frame of the previous step is dispatched into

the network after rearranging its pixels into multiple low-

resolution images.

Our model consists of three main components as shown

in Fig 2; an input subnetwork that shuffles and combines

multiple motion-compensated reference frames, a blending

backbone that applies fully convolutional blocks on low-

resolution feature maps, and a spatial upsampling subnet-

work that reconstructs the high-resolution image.

The blending backbone is made up of fully convolutional

residual units. After a long series of residual units, we em-

bed a direct skip connection from the first feature layer to

the last one to maintain the influence of the original ref-

erence frames on the feature map of the last layer. Thus,

our backbone is conditioned on reconstructing the resid-

ual info, which includes the missing high-resolution pat-

terns in visual data. The residual blocks and direct skip

connection also allow us to deepen the blending backbone,

which boosts the overall representation capacity of the net-

work and to increase the areas of the receptive fields for

the higher level convolutional layers, which enables better

contextual feedback. The representation capacity is suppos-

edly proportional to the number of network parameters. The

blending backbone utilizes different combinations of mo-

tion compensated reference frames including the shuffled

and low-resolution mapped versions of the estimated high-

resolution output of a previous stage. This permits trans-

ferring the initial model into progressively more complex

networks in the following stages. Note that, each state is an

independent network.

Following the blending backbone, we apply a spatial up-

sampling subnetwork to reconstruct a higher-resolution im-

age from the feature map. This subnetwork uses pixel shuf-

fling with learned weights, thus it does not require deconvo-

lutions. One can consider that the blending backbone pre-

pares the best possible feature maps, which have a large

number of channels, and the spatial upsampling subnet-

work layers for rearranging the feature maps into the high-

resolution image using the learned weights of the filters of

these layers.

We then bootstrap the VSR process by space-to-depth

rearranging the estimated high-resolution image into multi-

ple low-resolution channels, updating the motion compen-

sation, combining the estimated and original frames, and

applying a similar network again as the next stage. This

frame-recurrent approach bootstraps on the estimated high-

resolution results and provides additional performance im-

provements.

To summarize, the contributions of this paper are:

• We introduce a general-purpose, class-agnostic, and

fully convolutional network for video super-resolution

that processes multiple-reference frames in their orig-

inal low-resolution format throughout its blending

backbone and then reconstructs the high-resolution

output from rearranged feature maps.

• We recurrently apply the network to leverage on the re-

constructed high-resolution outputs from the previous

stages to bootstrap and enhance image quality progres-

sively.

• As our experiments demonstrate, our method gener-

ates temporally consistent results and handles complex

real-world scenes depicting moving objects, fast cam-

era motion, uncontrolled lighting conditions, shadows

without inducing perceptual artifacts.

• Our method is ranked officially as the second best

based on the SSIM scores on the NTIRE 2019 VSR

Challenge Clean Track with our previously submitted

results. Our latest model further improves our submit-

ted results by 0.3 dB in terms of the PSNR scores.



Figure 2. Network architecture. Our network has three parts; an input subnetwork (with optical flow based motion compensation), a

blending backbone, and a spatial upsampling subnetwork.

2. Related Work

VSR methods have mainly emerged as adaptations of

image super-resolution techniques, for which a survey of

conventional methods can be found in [11, 26].

It is possible to categorize the past approaches in sin-

gle image-resolution in terms of the reference examples

they utilize. The internal reference based methods attempt

to identify internal redundancies using patch recurrence to

obtain essential information in upscaling of the patches

[6]. The recurrence assumes patches in a single image en-

code multi-scale relationships, which may allow inferring

the missing high-frequency content at a given scale from

the coarser scale patches. Dictionary learning approaches,

which define the input image as a sparse linear combination

of dictionary atoms coupled to an HR dictionary [13], may

employ both internal and external reference examples since

such dictionaries are learned in a data-driven manner using

internal and external training pairs [24, 25, 6, 27].

Deep learning based methods build models on mainly

external references while approximating complex nonlinear

functions inherent in super-resolution task. One of the pio-

neering convolutional neural networks, SRCNN, is made up

of a simple 3-layer model [2]. Since then, neural networks

have been attaining superior performance, often leveraging

on deep structures and residual learning [9]. These meth-

ods take a bicubic enlarged LR image as an input to their

first convolution layer, which leads to high computational

burden. To address this problem, the work in [21] keeps

the spatial resolution of the feature maps in the network as

in LR image and obtains the HR image through a simple

reordering of the multi-channel output feature map. Simi-

lar solutions to improve efficiency have also been proposed

based on transposed convolutions [3, 7]. Removing batch

normalization layers, reusing the saved memory (which can

be up to 40 percent of the original network) to employ a

much larger model, and postponing the upsampling to the

very end of the network, [11] further improved the perfor-

mance. They argue that batch normalization causes the loss

of the scale information and hinders range flexibility of the

network.

Extending super-resolution task from images to videos,

VSR methods expose and exploit the temporal correlations

to access multiple references of the same scene through

aggregating spatial information across consecutive frames

while compensating for interframe motion. Focusing on

deep learning based solutions, the main idea is to align and

warp neighboring frames to the current frame before all

images are fed into a super-resolution network [8, 1, 23].

It is therefore quite common for VSR to explicitly com-

pute motion, for instance, using off-the-shelf optical flow

algorithms [22]. Computing motion, on the other hand,

is usually expensive. Alternatively, motion estimation lay-

ers can be integrated into the super-resolution [12] as part

of the network. Similarly, [14] uses a sliding window

approach and combines the frame alignment and super-

resolution steps. Joint motion compensation and super-

resolution can also be performed using comparably shal-

low recurrent bidirectional networks [4] without explicit

motion compensation. However, training an integrated

and often low-capacity motion estimation layer is challeng-

ing, which might distort accuracy. Rather than compen-

sating for motion, [13, 8] operate on a stack of frames at

the same time to generate different high-resolution images

and then condense the results into a single image. How-

ever, such methods are sensitive to the degree of motion in



the videos. Another noteworthy VSR method [18] applies

perceptual loss in their adversarial recurrent network that

uses optical flow in order to exploit temporal cues across

frames and a temporal-consistency loss term to reinforce

coherency across frames. This network postpones upscal-

ing to the very end of the generative network, which ar-

guably makes the learning more difficult than stage-wise

learning. The work in [1] introduced pixel shuffle based up-

sampling. Their network also has a dedicated optical flow

subnetwork. However, a patch-based training for motion

compensation may not generalize and account for large mo-

tion. Later, [10] provided minor improvements by switch-

ing from explicit motion compensation to 3D filters. A

frame-recurrent approach which passes the previously es-

timated high-resolution frame as an input for the following

iteration is recently proposed by [20]. Unlike our method,

this work uses only the previous frame as a reference and

attempts to learn an individual optical flow network, which

can be considered as its weaknesses.

3. Proposed Method: MultiBoot

Our bootstrapped VSR solution is composed of multiple

stages. In this paper, we report the results for two consecu-

tive stages, yet our methodology can be applied recurrently

more than that.

Each stage has a small input subnetwork, a deep blend-

ing backbone, and a spatial upsampling subnetwork as il-

lustrated in Fig 2. See Table 1 for the network parameters.

3.1. Input Subnetwork

The input subnetwork takes multiple motion-

compensated (warped) reference frames as the input

tensor and applies convolutional filter layers on it. Each

reference frame is an RGB image, which is normalized

it to [-1,1] for efficient backpropagation. We select these

reference frames within a temporal window centered

around the current frame. We empirically set the temporal

window size to [t−2, t+2], five frames including the current

frame, as a trade-off between the speed and accuracy. In

our experiments, a temporal window [t−3, t+3] generated

slightly better estimations. The GPU inference time for

adding two more reference frames is minor (1 millisecond);

however, the main issue is the cost of the additional optical

computations, which take around 400 milliseconds.

These frames can be sampled uniformly, which is what

we report in this paper. They can be selected based on some

motion or frame difference measure as well. For instance,

the sampling frequency can decrease when the motion is

small and vice versa.

We warp each reference frame to the current frame us-

ing the interframe motion from each reference image to the

current frame as shown in Fig. 3. We estimate dense opti-

cal flow by the pre-trained model of FlowNet 2.0 [5], which

Table 1. MultiBoot: Network Parameters

Subnetwork Type Shape Params

Input Stage1 Kernel 3x3x15x256 34560

Bias 256 256

Blending 16×
ResBlocks

Stage1

Kernel 3x3x256x256 9437184

Bias 256 4096

Kernel 3x3x256x256 9437184

Bias 256 4096

Upsampling

Stage1

Kernel 3x3x256x256 589824

Bias 256 256

Kernel 3x3x256x1024 2359296

Bias 1024 1024

Kernel 3x3x256x3 6912

Bias 3 3

Kernel 3x3x12x256 27648

Bias 256 256

Input Stage2 Kernel 3x3x255x256 587520

Bias 256 256

Blending 16×
ResBlocks

Stage2

Kernel 3x3x256x256 9437184

Bias 256 4096

Kernel 3x3x256x256 9437184

Bias 256 4096

Upsampling

Stage2

Kernel 3x3x256x256 589824

Bias 256 256

Kernel 3x3x512x2048 9437184

Bias 2048 2048

Kernel 3x3x512x2048 9437184

Bias 2048 2048

Kernel 3x3x512x3 13824

Bias 3 3

Kernel 3x3x3x3 81

Bias 3 3

Total trainable parameters in Stage1 21,902,595

Total trainable parameters in Stage2 38,952,791

is reported to be among the best neural network models.

FlowNet 2.0 relies on an arrangement of stacked networks

that capture large displacements in coarse flow estimates,

which are then refined by the following networks. In a fi-

nal step, these multi-scale estimates are fused by a shallow

fusion network. The input subnetwork arranges the warped

images of the reference frames and current image in a 15-

channels tensor. It then applies 256 filters, 3×3×15 each.

The above description is for the first stage. For the fol-

lowing stages, we have additional references. After the first

stage, we estimated 5 HR images; thus in addition to LR

reference frames, we also use these 5 estimated HR im-

ages. We first rearrange (space-to-depth) the pixels of an

estimated HR image into 16 LR images. We then combine

all LR images from the 5 estimated HR images into a 240-



Figure 3. An example of motion compensation: A) Input image It. B) Image It+2. The grid is added to make the apparent motion across

the frames more clear. C) Visualization of optical flow from It to It+2 computed using Flownet2. D) Image It+2→t that corresponds It+2

warped to It using the computed flow. E) Visualization of the difference |It − It+2→t|. F) Weighted average image 0.5(It + It+2→t),
where sharper areas suggest accurate motion compensation and warping.

channels tensor, and concatenate the LR reference frames

of the first stage to obtain a 255-channels tensor that has the

original LR spatial resolution. For 2× super-resolution, the

number of LR images after the space-to-depth rearrange-

ment would be 4.

Please notice that our network uses the original LR reso-

lution frames in all its subnetworks and stages. Since we use

the same image size and RGB modality for all references

(from the original LR frames as well as from the rearranged

images of the estimated HR frames), the learning becomes

more efficient. Multiple references provide spatially vibrant

local patterns for super-resolution task.

3.2. Blending Backbone

The blending backbone applies fully convolutional

blocks on low-resolution feature maps generated by the in-

put subnetwork layers. It is made up of 16 fully convolu-

tional residual units. Each residual unit has a front convolu-

tional layer followed by a ReLU and a second convolutional

layer with a skip connection from the first one. Similarly,

the blending backbone has also a direct skip connection

from the input to the last residual block. This skip connec-

tion allows our network to learn the missing high-resolution

details by reconstructing the residual info. The structure of

the blending backbone of each stage is identical.

The residual blocks and the direct skip connection also

permits deepening the blending backbone for each stage.

This boosts the overall capacity and increases the receptive

field sizes. Thus, our blending backbone feature maps have

better access to contextual information in the reference im-

ages.

3.3. Spatial Upsampling

We apply a spatial upsampling subnetwork to recon-

struct a higher-resolution image from the feature map of the

blending backbone. Since we shuffle pixels and we apply

a set of convolutional filters, our upsampling does not re-

quire deconvolution operations. We rearrange the compara-

bly large number of feature map channels per pixel into a

high-resolution image using the learned weights of the fil-

ters of the upsampling subnetwork layers. We set the num-

ber of layers for the first stage and the second stage to 4 and

5 as the second stage feature map has more channels. Each

stage provides 2× super-resolution, yet it is possible to set

the upsampling factor to larger ratios since there the feature

maps are sufficiently deep.

For a goal of improving the PSNR measure, a straightfor-

ward loss function would be the mean squared error (MSE),

which measures the average of the squares of the errors,

i.e., the average squared difference between the estimated

values and what is estimated. However, MSE heavily pe-

nalizes the outliers. Recently, the work in [11] empirically

demonstrated that the mean absolute error (MAE) works

better than the MSE. In our experiments, we also made a

similar observation. In particular, at the initial stages of the

training, using the MSE based loss functions caused insta-

bility. Nevertheless, it is slow to learn by an MAE-based

loss at the later epochs. Therefore, we opted to impose the

Huber loss function, which is differentiable and combines

the benefits of the MAE and MSE. It is defined as

Lδ(d) =

{

1

2
d2 for |d| ≤ δ,

δ|d| − δ
2

2
otherwise

(1)



Table 2. NTIRE 2019 VSR Clean Track - ordered by SSIM

Team PSNR SSIM

CUHK 31.79 0.8962

Ours - MultiBoot 31.00 0.8822

Baidu 31.13 0.8811

TTI 30.97 0.8804

NERCMS 30.91 0.8782

UIUC-IFP 30.81 0.8748

BMIPL UNIST 30.43 0.8666

IPCV IITM 29.99 0.8570

NEU SMILE Lab 29.39 0.8419

MVGL 28.81 0.8249

Team India 28.81 0.8241

Withdrawn team 28.54 0.8170

Bicubic (baseline) 26.48 0.7799

where

d = IHR(x, y)− ÎHR(x, y) (2)

is the pixel-wise difference between the target (ground-

truth) HR image IHR and the estimated HR image ÎHR.

Above, we set δ = 1, which is the point where the Huber

loss function changes from a quadratic to linear.

We trained the first stage network and then the second

stage network by using the first stage parameters for initial-

ization. Figure 4 shows the 32×32 input reference patches

to the first stage and the estimated 128×128 output patches.

4. Experiments & Discussion

As shown in Table 2, our method is ranked as the sec-

ond best based on the SSIM scores on the NTIRE2019 VSR

Challenge Clean Track with our previously submitted re-

sults [16]. When we fine-tuned the hyperparameters of our

method after the challenge deadline, the PSNR further im-

proved 0.3 dB over the submitted results. Sample results

can be seen in Fig. 5.

Dataset/Augmentation: For training and testing our

method, we only used the REDS datasets [15] provided

by the NTIRE 2019 benchmark. These datasets in-

clude 1280×720 HR images with and the corresponding

320×180 LR versions. There are 240 videos for training,

30 videos for validation, and 30 videos for testing. Each

video has 100 frames. The HR versions of the test videos

are not released.

We sampled randomly around 1 million (24000∗48)

patches of size 128×128 from the 240 training HR videos,

48 patches per image, for our training. We used 3000∗16

patches from the 30 validation videos, 16 per image, for

validation.

We augmented the data at the training time by apply-

ing one of these transformations; rotating 90◦, 180◦, 270◦,

flipping vertically, and flipping horizontally. It is possible

to use more sophisticated data augmentation schemes with

better computational resources.

Compared to other VSR benchmarks, NTIRE 2019

benchmark is an order of magnitude larger. Our network

size (with 32 layers, 256-channels feature maps, 60M pa-

rameters) is not at the diminishing return of PSNR, and

there is room for further improvements, e.g., using wider

and deeper models computational resources allowing.

Despite the variety of videos scenes in the training set,

data-driven models may not fully generalize to arbitrary

videos. We found that even with short durations videos for

fine-tuning, the VSR performance improves.

Training: We trained our network on Nvidia 2080 ti

GPU with a batch size of 32 LR-HR image pairs using Ten-

sorFlow python library. The training takes around a week,

where most of the reduction of the loss happens within the

first 48 hours. We used a learning rate of 1e-5 for warm

starting, 5e-5 for mid-epoch training, and a lowered rate of

1e-6 towards the later steps. We observed that learning rates

of 1e-4 and higher (as reported in the literature) were not

stable.

Number of Residual Blocks: Our network executes

convolutions all in LR spatial size, thus it allows a high

number of residual blocks than some of the existing meth-

ods that first bicubic upsample the given LR image then ap-

ply convolutions to images and feature maps in HR spatial

size. We tested different numbers of residual blocks; 12,

22, 32, and 42. Increasing the number of residual blocks,

as expected, improved performance. Using more resid-

ual blocks in the blending backbone provides better feature

maps. However, the GPU memory sets a limit, in particular,

for larger patch sizes and upscaling factors.

Size of Feature Maps: Many existing super-resolution

models that use LR convolutions postpone to upsampling

to the very end of the network with deconvolutional layers.

This makes it hard for the model to converge in training.

For speed, we observed that pixel rearranging (i.e. depth-

to-space conversion) and pixel tiling are computationally

less complex than learning deconvolution filters. In our ex-

periments, using there was no significant performance dif-

ference between using deconvolutional filters and pixel ar-

ranging. Furthermore, we employ 2× super-resolving after

the first stage. This gradual upscaling is easier to learn than

a single-shot 4× upscaling. We also tested different fea-

ture map depth (256 vs. 384) per layer; however, PSNR

improvements were not substantial.

Temporal Window: In our current architecture, we tried

different numbers of reference frames. We observed 0.10

dB PSNR improvement from [t−1, t+1] to [t−2, t+2] and

0.05 dB improvement from [t−2, t+2] to [t−3, t+3].

Model Variants: As a part of our ablation study, we

tested different models. We resized the input to 2×, applied

32 residual blocks, and rearranged pixels 2× at the end for



It It−2→t It−1→t It+1→t It+2→t Stage-1 output Groundtruth

Figure 4. Input and output of the first stage. Columns 1-5: Sample 32×32 patches of the motion compensated input frames It, It−2, It−1,

It+1, and It+2. Column 6: Estimated 128×128 HR patch after the first stage. Last column: Groundtruth HR patch.

a total of 4× super-resolution while keeping the number of

references and other parameters same. This model has a

comparable number of parameters to our proposed model,

yet twice as slow (650 milliseconds vs. 1170 milliseconds).

Since the tensors become large, the maximum number of

images in training batches drops to 8 from 32, which also

negatively affects the convergence behavior.

Run-time: The inference time computational perfor-

mance depends on the number of residual blocks. Our

model runs at 647 milliseconds (490, 570, 730) for 32 resid-

ual blocks (12, 22, 42). The optical flow computation takes

200 milliseconds per image. However, these numbers can

be much smaller since neither our model nor the optical flow

is optimized for the GPU.

5. Conclusions

We presented a fully convolutional, multi-stage neural

network for 4× video super-resolution. To this end, we

used multiple warped reference frames within a temporal

window around the current frame as input to the first stage.

In the second stage, we concatenated the LR versions of

the estimated and rearranged HR outputs that are computed

in the previous stage to the reference frames. Our network

processes the input frames in low spatial resolution, thus it

has low memory requirements.

For future work, we aim to investigate joint architec-

tures that share part of the weights and combine them into

a single model with different processing branches, which

would allow training part of the network with image super-

resolution datasets and then fine-tune with video super-

resolution datasets.
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